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Abstract. Most analytical results c o n c d n g  the long-time behaviour of Bssociative 
memory networks have been obtained by using binary elementary units. Here, the 
use of alternative types of nemn-like processing elements is considered as a way 
of testing the generality of those results and of appmaching biological realism. In 
particular, threshold-linear units are proposed as appropriate in models designed to 
reproduce low firing rates, in which long-time stability does not rely on single unit 
saturation. Sum units are simple enough to allow detailed analytical understanding 
of the properties of the network. This is demonstrated by analysing the attractor 
states of a network operating at low rates. It is shown that while the interesting 
retrieval behaviour persists, the roles of the diffelent parameters as well as the nature 
of the stable states change completely with respect to the binary implementation. 

1. Introduction 

In most attractor neural networks (ANN) [l, 21 that model auto-associative memory 
retrieval, the instantaneous activity state representing the output of a formal neuron 
is a binary variable, which at  prescribed times is assigned one of two values according 
to some integrated input variable reproducing the signals coming from other units. 
Alternatively, when a continuous representation of the activity state is used, the neuron 
input-output relationship is typically described by a sigmoid function, so that the 
output has a lower bound representing a quiescent neuron, and saturates at  a given 
high activity level. These bounds on the activity of single units have an important 
role in ensuring the global stability of the network, in the long time limit, whenever 
no alternative mechanism regulates the overall activity level. Conversely, networks 
endowed with the same type of interactions, but made up of simple linear units [3], 
fail to produce meaningful long-time behaviour. 

When considering network models as providing clues for the analysis of cortical 
systems such as, for example, the CA3 region of the hippocampus, one should keep 
in mind that, in those systems, neural activity levels (firing rates) appear to be de- 
termined by a complex interplay of afferent and intrinsic excitation and inhibition 
(e.g. [4]), rather than by the (relatively high) saturation limits of single cell activity. 
In recording experiments, very rarely do activated cells sustain high spiking frequen- 
cies in the range of several hundred spikes s-l; most often the most active ones fire 
at  only tens of spikes s- ' .  On the other hand, high frequencies of the order of the 
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inverse absolute refractory period would seem to be implied, in the models, by the 
stabilisation of the network into a given attractor. 

In order to address this problem, associative memory network models have been 
proposed [5-91, in which individual units, still realised as binary variables, display 
activity levels which are kept low compared with the maximal levels occurring when 
units persist in their active state. The saturation of single units then ceases to be the 
factor that determines the overall stability of the network. Instead, this is ensured by 
a tunable balance of excitatory and inhibitory contributions. 

It becomes appropriate in this modified context, in which single unit saturation 
effects play no important role, to  reconsider alternative representations of single neuron 
behaviour to the usual binary one. Granted that formal neurons, that allow analysis 
and simulation of very large networks, still need to be extremely simplified processing 
units, one may ask a number of questions. 

(i) In what sense can an alternative (simple) representation claim to come anywhere 
nearer to realistically reproducing the highly complex behaviour of real neurons? 

(ii) To what extent may it enhance the biological plausibility of the whole network 
as a model of a neural function? 

(iii) Does the use of alternative representations meaningfully affect the behaviour 
of known models? 

(iv) Is it still possible to use the more powerful analytical tools developed in 
studying previous models? 

The first two points, of a more general scope, will be addressed elsewhere. This paper 
will be concerned with the last two questions. In particular, we shall study a network 
operating a t  low firing rates, in which a simple threshold-linear, rather than binary, 
elementary unit is used. First, this will demonstrate how analytical techniques can be 
easily extended to the new framework. Second, it will exemplify some of the effects of 
adopting the alternative type of elementary unit. The main conclusion that may be 
drawn is in a sense familiar. It is the observation that ‘high level’ features, e.g. retrieval 
behaviour as an emergent property of the network, are more robust and independent 
of details than ‘low level’ ones, such as the dynamical nature of retrieval attractors or 
the nature of transitions between different types of long-time behaviour. While this 
provides additional evidence for the importance of theoretical approaches to neural 
networks, it also underscores the need to test the robustness of results obtained under 
very specific assumptions. 

In sections 2 and 3 we recall the structure of the model considered, and how its 
long time behaviour can be described. In section 4 the threshold-linear representation 
is introduced, while the encoding of memories is dealt with in section 5. The analytical 
treatment set up in section 6 is specialised in the next two sections to describe the 
attractor states occurring a t  low memory loading and low noise levels. Section 9 
reports the results of numerical simulations, and conclusions are drawn in the last 
section. 

2. A low firing rate attractor neural network 

In references [5,6] an associative memory model was proposed aa a modified version 
of the Hopfield network [l], that displays low individual ‘spiking activity’ rates. The 
model distinguisha between excitatory and inhibitory neurons, and only the pattern 
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of firing activities of the former is assumed to  bear information related to  the memory 
stored on synaptic strengths. An effective representation of inhibition is used, in which 
inhibitory effects contribute a term to the input of excitatory neurons, expressed as 
a nonlinear (quadratic) function of an averaged activity rate of the excitatory neuron 
themselves. 

Synaptic efficacies encode information about p memorised patterns of activity qf, 
where p = 1,. . . , p ,  i = 1,. . . , N ,  and N is the number of excitatory neurons. Each 
# is a positive number related to  the degree of firing activity of neuron i in pattern 
p ,  and in the implementation of [5,6] it was supposed to take the value 0 or 1 with 
independent probabilities, respectively 1 - a  and a. The single variable describing the 
activity of neuron i is K ,  which again was assumed binary (0 or 1). It depends on an 
input variable, the local field hi = hF + hf. The excitatory part of the local field is 
written as 

N 

where the (direct) synaptic couplings Jjj assume the form 

The inhibitory contribution was  taken to  be [5] 

where the parameter X regulates the strength of the term relative to hp .  

3. Dynamical evolution and attractor states 

Neuronal states are updated in random order, and the new state is chosen stochasti- 
cally [lo], in the binary case as 

P(V,  = 1) = [exp(-phi) + I]-' (4) 

where the 'temperature' T E p-' measures the amount of stochastic noise in the 
process. 

Subject to  the above interactions, the network evolves dynamically towards one 
of a set of attractor states. In a given attractor, the network may still wander among 
a variety of configurations due to  the stochastic noise, but it reaches a stationary 
probability distribution of being in any particular configuration at any instant of 
time. 

The correlation of the attractor state of the network with the stored patterns can 
be measured by the overlaps 

1 N P  

i=l  
N (5) 
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where (. . .) denotes averaging over the probability distribution characterising the at- 
tractor. 

The overall mean activity of the network (i.e., of the excitatory neurons explicitly 
represented) can be measured by 

One can further define 

and 
. N  

Clearly, y1 - x 2  is a measure of the variance in the distribution of activity between 
excitatory neurons, while y2 I yo - y1 will measure the correlation among the various 
configurations concurring in the attractor state. Thus, y1 = x2 implies that all neurons 
have the same average activity, while y2 = 0 implies that the network h a s  frozen into 
a single configuration, i.e., each neuron has stabilised on a definite activity rate. Note 
that if V can assume only the values 0 or 1, x E yo, so that for the analysis of [5] one 
needed just x and y1 as global order parameters. 

In the binary implementation, the scenario appropriate to memory retrieval was 
identified as the relaxation of the network into an attractor state, in which one of the 
overlaps would be much larger than the rest, e.g. x 1  > xpfl, but each single unit 
would have an averaged activity rate considerably below the maximal one, (K) < 1 ,V i .  
Such a scenario was found to be possible for intermediate values of the noise parameter 
T. In fact, the requirement that single units do not 'freeze' into the saturated activity 
state (K)  = 1 implied a substantial amount of noise, which still had to be low enough 
in order to break the symmetry between the various patterns and allow the emergence 
of a single one [5]. 

4. A threshold-linear neuron representation 

In considering alternative representations for the elementary units of the network, we 
shall restrict, as stated above, to the simplest case in which the abstract neuron is a 
single variable, V ,  corresponding to a short-time averaged firing rate. This variable 
is updated at discrete times, independently of its previous history. The choice of 
representation reduces to choosing an appropriate input-output function, where the 
input is also taken to be a single variable, the local field h ,  summarising the effect 
of the instantaneous firing rates of the other neurons in the network. Three possible 
representations are shown diagramatically in figure 1. 

One would like to preserve in the input-output relationship some of the most 
basic general features of the behaviour of real neurons. For example, when the input 
is below a given threshold the neuron does not fire. Above threshold, there is a region 
where the firing frequency depends strongly on the input level. At very high input 
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n n h 

Figure 1. Some of the functions often used the represent the input-output depcn- 
dence in a simple formal neuron: (a) Heaviside; ( b )  sigmoidd; (c) threshold-linear. 

levels, the firing rate reaches saturation, since the neuron has an absolute refractory 
period. 

When the binary representation is used [ll], it is assumed that the neuron spends 
most of its time either not firing or firing at  saturation levels. Accordingly, the region 
of intermediate firing levels is squeezed to a single point, and the input-output relation 
acquires the stepwise form 

v = 8 ( h  - T h r )  (9) 

with 8(z) the Heaviside function, and Th, a threshold. 
More general forms for the input-output function, that would allow for the output 

to assume continuous values, have been considered in the literature in a variety of 
contexts (see [12,13]). A common choice is a sigmoidal function of the type 

v = Fsig,,,(h) = f{l + tanh [g(h  - Thr)]} 

that varies rapidly in a region of width g- ’  between a zero ouput for h < Thr and a 
saturated one for h B Thr. It has been argued [14] that as long as the gain g is high 
enough, the behaviour of an attractor neural network built of such neurons is similar 
to that of the corresponding network built of binary neurons. In the energy formalism, 
in those cases in which it can be used, the sums over the two states of binary neurons 
become weighted integrals over all possible values of the neurons’ firing rates. The 
weight factor [14,15] can be expressed as an additional term Ci FZim(h) dK in 
the energy of each configuration. With a high-gain sigmoidal function, the weight of 
the rates close to zero and to saturation dominates, and the neurons are expected to 
behave in a manner similar to binary ones. 

Both with binary neurons and with analogue neurons, it is possible to account for 
noise effects via the introduction of an effective temperature [16]. In some cases the 
noise can have a very important role. The network recalled above is a case in point [6]. 
It operates properly only when the noise is strong enough to make the system wander 
stochastically over small free-energy barriers. A non-zero noise level is required to 
keep active neurons jumping frequently between the 0 and the 1 state. 

However, as the interactions in the network are designed to model the effect of 
inhibition, and to keep neurons away from the saturation region of high rates, using 
binary or indeed sigmoidal functions loses much of its raison d ’ i i r e .  In fact, one 
can renounce representing the Saturation effect at all. Let us consider the simple 
alternative for the input-output function: 

’ Thr 
< Thr 
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i.e. a function that is linear above threshold and zero below it. Such a function has 
been widely used in different models (e.g., in [17]). As it neglects to describe the 
saturation intervening a t  high firing rates, it is a viable choice, in the long-time limit, 
only if a cooperative effect prevents the neurons in the network from approaching 
saturation levels, Close to the threshold, it describes in a simplified way the dual 
nature of neuronal response: below threshold the neuron is in its resting state (a 
discrete feature), while above threshold its output varies continuously with the input 
(here, linearly). Contrasted with the binary representation, the linear regime can be 
argued to be a closer approximation of the response above threshold, but still away 
from saturation levels, of a more realistic model neuron. Nevertheless, this threshold- 
linear representation allows, in contrast with more complex ones, a complete analytical 
study of network properties, as the following treatment will exemplify. 

This description can be easily generalised to include noise effects. One way to do 
it, while keeping the Glauber dynamics with discrete time and stochastic updatings, 
is to introduce again an effective temperature. One associates with the firing states 
of each neuron the weight factor 

Beside the gain g,  the threshold Thr, and the inverse temperature /3, a new parameter 
k has been introduced. It gives the relative weight of the resting state of the neuron. 
If hi is, as before, the local field acting on neuron i, the updating process can then be 
defined by giving the probability that the updated firing rate of the neuron will fall 
between K and + dV, namely 

P ( K , d V )  = D-'exp[p(Khi - K T h r  - &2/2g)]dV (13) 

and the probability of the new firing rate being zero 

P(0) = D-'k 
with 

In the zero-temperature limit, p + 00, it is easy to see that the updating becomes 
deterministic, and proceeds according to the input-output relation expressed in (1 1). 
If < 00, p-' measures the typical deviation of the stochastically updated frequency, 
y, from g(h, -Thr), provided hi > T h r *  If hi < T h r ,  p-' determines the likelihood that 
the neuron will nevertheless fire at  non-zero frequency. Thus, equation (12) allows one 
to perform 'finite temperature' statistical calculations, in a natural generalisation of 
the deterministic rule, equation (11). In particular, for a network whose evolution can 
be described in terms of an energy function, one can study the minima of the free 
energy [2] in order to investigate the long-time behaviour. 

5. General distributions of memories 

In the class of associative memory models that we are considering, a set {a} of 
stored memories is assigned a priori, and determines the strengths of the synaptic 
connections. There is, of course, an infinite choice of ways in which one can assign the 
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Figure 2. The three probability density distributions fv considered: (a) binary; ( b )  
flat; (c) exponential. 

memories. We restrict ourselves to the case in which each rjf is assigned independently 
as a quenched random variable, according to some probability density distribution 
P,,(r)), which is the same for all p = 1,. . . , p  and i = 1,. . . , N. The independence 
of the vf is a very useful assumption from a technical point of view and, although 
arbitrary, it is commonly used to study general properties of networks. The form of 
P,, , however, can still be chosen freely. 

There are at  least two aspects to the choice of P,, , when considering its significance 
in models inspired by neurobiology. First, as long as the synaptic matrix is written in 
the so-called Hebbian form of (2), the form chosen for P,, determines the interactions 
occurring in the model, in that it sets the probability distribution of the synaptic 
strengths. Second, inasmuch as synaptic imprinting is supposed to have occurred via 
mechanisms of synaptic plasticity during a learning phase, the precise relation between 
each 7; and the firing activity of neuron i in memory state p could conceivably be 
made to model e.g. a certain LTP mechanism. Both aspects are rather overshadowed 
by the question, currently debated [18], of the biological plausibility of the detailed 
structure implied in (1)-(3) or in their analogue in other model networks [l, 191. 

A common choice is to define P,, as the sum of two delta functions centred, e.g., 
a t  r) = 0 and r) = 1. This choice reduces each memory to a binary word of length 
N .  It is a most natural ansatz in a computer science context, where all variables are 
decomposed into binary form. It  also provides a helpfully intuitive picture, by simply 
dividing in each memory a group of ‘active’ neurons from the rest of ‘passive’ ones. 
On the other hand, the use of this form for P,, has contributed to generate confusion 
in the neurobiological community. In fact, when recording from animals performing 
cognitive tasks, the firing rates of individual neurons hardly appear to fall into two 
clear-cut classes, characterisable by high and low activity. It has been asked whether 
this fact would not disprove the neurobiological relevance of attractor neural networks. 

To treat more general probability distributions P,, is straightforward. We shall 
consider a number of specific cases that satisfy the following general requirements: 

6 )  

where P,, is a probability density distribution; 
(ii) P,,(r)) = 0 for 7 < 0 
i.e. negative firing rates have probability zero; 

(iii) J P,(v)v dr) = a 

(to set a common normalisation). 
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In particular we shall consider in detail the following possibilities illustrated in 
figure 2: 

i.e. the binary-word choice; 

P&) = 1/20 (0 5 v 5 20) = 0 (11 > 2) (17) 

which assumes that the 9 are flatly distributed from 0 to 2a; 

where the distribution is exponential. The three forms chosen all lend themselves to 
explicit analytical treatment. The final goal of the analysis is not to provide specific 
answers for specific cases, but rather to test to what extent the retrieval behaviour of 
the model persists irrespective of the form chosen for the distribution of the memories 
and, consequently, of the synaptic strengths. 

6. Mean-field theory calculations in the general case 

The analysis of the (thermodynamic) attractor states of the network [2] that was 
presented in [5] can be repeated along the same lines in the case of a more general 
probability density distribution P,, governing the assignment of random patterns, and 
of a more general neuron representation. Again, one expresses the free-energy in terms 
of a few parameters, and then looks for its local minima. These corresponds to possible 
attractor states. We note here a few points involved in the free-energy calculation, 
while formal derivations are relegated to an appendix. 

As in reference [20], the average over the quenched pattern distribution is per- 
formed in two stages. First, over a possibly infinite number of ‘uncondensed’ patterns, 
i.e. those that are only randomly correlated with the thermodynamic state of the 
system. Later, over a finite number of ‘condensed’ patterns, i.e. those that contribute 
explicitly in determining the firing distribution in the thermodynamic state. Accord- 
ingly, the form of the probability density Pv enters twice in the calculation. In the 
first stage, the only relevant parameters are the first moment of Pq, which has been 
set to be a ,  see above, and the second moment, which is written 

In the second stage, instead, the full shape of Pv becomes important. It turns out 
that the relevant temperature scale, which measures the competition between the fast 
‘thermal’ noise and the cold noise due to random correlations between the patterns, 
is determined by the ratio a2 /a2 ,  which will be denoted by the symbol To. For the 
three forms of P,, considered, To takes the values 

(1 - .>/a binary 

1 exponential. 
To = { 1/3 flat 
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The use of order parameters in the mean-field theory calculation allows to decouple 
the different degrees of freedom. The Hamiltonian is expressed as a sum of single- 
neuron terms, each of the form 

H ( ' )  = -hV - h,V2 

TT (h ,  h,) E % exp[P(hV + h2Vz)] . (22) 

(21) 
h,  h, being functions of the order parameters introduced. Then, one performs the 
trace over the single-neuron states, which can be written formally 

If one uses the threshold-linear representation, it is clear from (12) and (22) that 
the interaction has been re-expressed as an effective single-neuron input h,  plus a 
modification to its gain parameter, which is now g' = g/(l - 2gh,). Explicitly 

Tr ( h ,  h,) = k + d m e x P [ $ P s ' ( h  - TJI{1+ 4 m ( h  - Thr)ll (23) 
where erf(z) denotes the error function. 

with a 
free-energy is (see the appendix) 

The free-energy calculation is performed (see [5]) in the limits N 00,p -+ 00, 

p / N ,  and use is made of a replica symmetric ansalr .  The end result for the 

where 

h,  = 4PP2 

Besides the order parameters already defined, the above expression includes p l ,  pz 
which have been introduced to enforce the definition of yl, y2, respectively. The saddle- 
point equations are 
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The second equation expresses the fact that A,  the parameter introduced to reg- 
ulate the strength of the inhibition, turns out to set the overall activity level (cf 
reference [5]) .  The emergence of one or more condensed patterns is manifested by 
their overlap parameters assuming values distinct from A (the first equation). 

7. The limits a -+ 0,p -+ 00 

We shall not analyse equations (26) for general a and p. As in reference [5 ] ,  the 
limit a + 0 will already yield a non-trivial structure, which can be considered a good 
approximation in cases in which p cg: N .  An analysis of the effects of extensive mem- 
ory loading on a network built of threshold-linear formal neurons will be published 
elsewhere [21]. 

The expressions derived 80 far are valid for arbitrary neuron representations and 
for any noise level. We shall focus now on the specific threshold-linear neuron rep- 
resentation proposed in section 4, and on the limit P + 00. One should note the 
differences from the case of spin-like neurons, treated in [5].  There, to consider the 
zero-temperature limit does not make sense, if one is interested in the low-firing rate 
retrieval behaviour of the network. At low temperature the system undergoes a spin- 
glass type of freezing, and single neurons either fire a t  maximal frequency or remain 
quiescent. If, however, the neuron representation allows for a region of analogue neu- 
ron response at intermediate rates, as in the present case, the thermal noise ceases 
to have the vital role of keeping the system ‘unfrozen’. A system frozen into a single 
configuration is, in fact, ‘acceptable’. The freezing by itself no longer implies that 
some of the neurons fire a t  their (implausibly high) saturation rates. An interesting 
question, then, is whether the non-trivial retrieval behaviour persists in this case. The 
problem can be addressed analysing the minima of the free-energy (which for /3 -). 00 

is just the energy), and the answer will be found to depend essentially on the gain g 
of the analogue response function. 

As in reference [5 ] ,  the analysis of (26) simplifies considerably when the frozen 
noise due to random correlations between the patterns is negligible. This is the case 
provided that, as P -+ 00 

1 - TOP92 + K > 0 (27) 

Notice that this implies that y, -.) 0 (at least as fast as T), i.e. each has a fixed 
value in the thermodynamic state, or in other words the system has indeed frozen into 
a single configuration. Then, the expression to be averaged, In[Tr ( h ,  h2)] ,  acquires, 
for our choice of neuron representation and in the p - 00 limit, a very simple form 

The relevant saddle-point equations reduce to 
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where h ( ( q ” } ,  (2”)) = Co(zu - X)q“/a - A. One can extract the meaning of these 
equations: only neurons whose local field is above threshold contribute to the average 
activity parameters, and h, has become irrelevant. Note, however, that this simple 
situation does not follow necessarily from the (Y -+ 0,p -+ 00 limits, as an example 
below will show. 

A remark should be made concerning the number of free parameters left in the 
model. Adopting the above neuron representation, one has introduced three parame- 
ters that were not present in the spin-neuron version, namely the gain g, the threshold 
Tir and the constant k. In a model like the present one, however, where an order pa- 
rameter ( A in our notation) acts as a chemical potential to regulate the overall firing 
rate, Thr can be reabsorbed into A and does not play any special role. Moreover, 
the fact that the model operates as desired even for p + 00 allows, in practice, to 
restrict the analysis to the zeretemperature case. Finally, the value of the constant k 
is irrelevant (provided it is finite) in the p + 00 limit. Therefore one ends up with a 
single relevant parameter describing the neuron, the gain g. This is a rather natural 
outcome, as it reflect the simplicity of the linear input-output response function one 
has started from. The only feature peculiar to the particular ANN model is the fact 
that even the value of the threshold is immaterial, due to the inhibition fixing the 
overall firing activity. 

The remaining part of the analysis, whenever (27) holds, reduces to performing 
explicitly the averages over the condensed patterns, with a given form for P,,, solving 
for the order parameters d’ and A, and considering the possible solutions for the 
free-energy minima. 

8. Attractor states 

8.1. The  uniform state  
The simplest solution of (29) occurs when no pattern condenses, and the system settles 
in a state characterised by equal overlaps with all the patterns. Then the chemical 
potential is A = X/g and it sets the overall firing rate to A. An inspection of (27) 
yields the condition under which it is consistent, within this solution, to neglect the 
effect of random fluctuations in the correlations between the uncondensed patterns 
and the state of the system. The condition reads 

g < TF1 E go (30) 
i.e. the gain has to be below a critical value go, which is determined by the ratio 
between the first and second moments of the distribution P,,. This holds for any choice 
of P,,. Within this solution all neurons are subject to the same local field (obviously, 
in the limit N + co), and therefore the system chooses a fixed configuration with the 
activity of each neuron set at A .  

It  can be verified that, for any P,,, this uniform solution is, in this gain range, the 
unique true minimum of the free-energy (i.e., the energy), whose value is 

f = P / 2 g  I (31) 
Therefore, when the gain is low the encoded memory structure fails to affect the 
behaviour of the network, which just settles into the configuration in which all neurons 
share the same prescribed activity level. 

The long-time behaviour for g > go depends, instead, on the form adopted for P,,. 
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8.2. The  high-gain behaviour f o r  binary memor ies  

Perhaps the simplest case to analyse is when P,,(q) = (1 - a)&(q) + a6(q - 1). One 
can then derive a general solution for a state representing a symmetric mixture of n 
different patterns, For n = 1 these are just retrieval s tates ,  and there are p of them. 
For n = 2, there are p ( p  - 1)/2 symmetric mixtures [20] corresponding to the possible 
pairs of stored patterns, and so on. 

The result of the analysis is that n-mixture states are the ground states of the 
system if 

90 
p - 1  an 
- d o  < g < - .  

In other words, as g increases from g o  to 00, symmetric mixtures of an increasing 
number of patterns become, in succession, the global energy minima, and thus the 
attractors relevant in the long-time limit. Each attractor consists, in the /3 -+ 00 

limit, of a single configuration. Solving (29 ) ,  one obtains that, in the interval (32 ) ,  
each of the n patterns of a mixture has an overlap z = X / a  with this configuration. 
This overlap is due only to those neurons that are active in all the patterns of the 
mixture. All other neurons are quiescent in the configuration. The energy of the 
mixture turns out to be 

f=-(-- x2 1 n(1 - a ) 2  
2 gan a2 (33 )  

For values of the gain g higher than those in the interval (32 ) ,  n-symmetric solu- 
tions violate (27). They are unstable to the growth of small random correlations with 
other patterns into full macroscopic correlations. In fact, m-mixtures, with a certain 
m > n,  are the ground states of the system for such g values. 

For values of g smaller than those in the corresponding interval, n-symmetric solu- 
tions correspond to unstable saddle-points rather than to true energy minima. They 
are unstable to the decay of some of the macroscopic correlations, so that eventually 
the system reaches an /-mixture, with 1 < n. 

As far as the retrieval behaviour is concerned, it is clear that the network, close to 
the limits assumed valid in the above analysis, will operate as a genuine classifier only 
if g falls in the interval where l-mixtures, i.e. retrieval states, are the stable solutions. 
Therefore, for this choice of P,,, the proper long-time behaviour occurs when 

(34) 
a 1 

- < g < - .  l - a  l - a  

8.9. The  high-gain behaviour f o r  a p a t  pat tern distribution 

For P,(q) = 1/2a (0 5 q 5 2a)  a different set of ground states emerge as the gain is 
increased. Initially the situation is similar to the previous case, that is, a t  g = g o  = 3 ,  
when the disordered state is destabilised, it is the p retrieval states that become the 
ground states of the system. The parameters describing the retrieval states can be 
found by writing down (29 )  explicitly for the case of a single condensed overlap, e.g. z', 
using the appropriate P,,, and combining them into a single equation for the variable 
4 (z' - X)/(z' - X - A/2). The equation reads 
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Its solution varies continuously from # = 1 at g = 3 (in which case t1  = $ A )  to # = 2 
at g = 6 (then z1 = !A). The energy of these states can then be written as 

In such retrieval states, active neurons display a variety of activity rates, depending 
on their q values. When pattern 1 is retrieved, the fastest firing neurons are those 
with q' = 2a, and their firing rate turns out to be z,,~ = 2A4. 

At g = 6 retrieval states are destabilised. In contrast with the previous case, 
no n-mixture state exists that satisfies (27). In other words, one is not justified, for 
g > 6 ,  in neglecting the fluctuations in the overlaps. In fact, the intervening ground 
state is of the spin-glass disordered type [20], and has overlaps with all the p patterns 
which display strong random deviations from their average values. That causes the 
order parameter p1 to have a macroscopically non-zero value. To describe analytically 
this spin glass phase (in the context of the replica-symmetric theory treated here) one 
cannot use (29), but has to rederive the correct Q + 0 limit of (26). This is achieved 
by keeping p1 finite, whereas pz + 0; after the limit /3 -+ 00 has also been taken the 
relevant saddle point equations then become 

( 3 7 )  
dz - exp(-z2/2). 

These equations yield values for A and p l ,  which satisfy 

and the resulting energy of the spin-glass state is 

Thus, for g > 6 ,  the long-time behaviour of the model cannot be used to retrieve 
any information encoded in the synaptic strength. The gain range in which retrieval 
does occur is, for this flat distribution, 
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8.4. The  high-gain behaviour for an exponential pattern distribution 

The situation for g > go is again different if one chooses P,,(v) = exp(-q/a)/a. In 
that  case, i t  can be shown that the ground states are the p retrieval states, all the way 
to  g + 00, and no other states are stable. Equations (29) can now be used t o  yield t1 
and A.  One obtains a single equation in terms of the variable x E A/(t'  - A) 

In terms of this variable, the ground state energy turns out to be 

x2 

f = y[l+gi--q A2 

Therefore, apparently the gain range in which the model exhibits retrieval is 

l<g<m. (43) 

One should note, however, that  as the gain increases the neurons that do contribute 
t o  the total firing activity of the network are the increasingly small fraction that ,  by 
virtue of their high 77 value in the retrieved prttern,  manage t o  exceed threshold. Their 
individual activity rates, being the global one fixed a t  A, tend to  be higher and higher 
as g increases. Therefore, one reaches a situation in which those few neurons that are 
active fire a t  unacceptably high rates, and this limits in practice the viable range of 
g. The limit cannot be located precisely, as formally there are, even for low gains, 
individual neurons firing a t  infinite rates in the N -+ 00 limit, due to  the exponential 
tail of the P,, distribution which extends to  infinity. 

8.5. Overview 

The states characterising the long-time limit behaviour of the model, and their ener- 
gies, are shown graphically in figure 3, for the three possible distributions P,, considered 
above. 

For a gain g < go the system always settles into a configuration characterised by 
uniform activity of all the neurons. In contrast, the three different networks, whose 
synaptic strength are determined by the three distributions P,, considered, exhibit 
widely different high-gain behaviour. A P,, made up of two &functions causes the 
network t o  settle into n-mixture state with increasingly high n. For a flat P,, there is 
a spin-glass transition a t  high gain, while for an exponentially shaped P,, the retrieval 
states remain the ground states up to  g - 00. As far, though, as their retrieval 
performance is concerned, the three networks share the property that their desired 
operation requires intermediate gain regimes, in the range immediately above go. At 
higher gains, even the third network, that  retains retrieval states as the unique fixed- 
points of its evolution, is beset by the problem that some neurons exhibit implausibly 
high rates, violating the condition that made the 'threshold-linear' representation 
acceptable. 

A feature common to all three cases is the absence of metastable states a t  energies 
higher than the ground states, for any given gain. The absence of such stable solutions 
a t  higher energies, which were, instead, present in the model utilising a binary neuron 
representation [ 5 ] ,  can be traced to  the analogue description of the elementary units. 
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Figure 3. The energies of the different ground states plotted on an arbitrary scale 
against the logarithm of the gain relative 9 relative to 90 defined in the text, for 
the three distributions P,, considered: curve A,  equation (16) ( a  = 0.25); curve B, 
equation (17); curve C, equation (18). 0 symbolises the uniform ground state, 1 the 
retrieval states, 2,3,. . . symmetric n-mixtures, and CO the spin-glass phase. 

The use of continuous variables turns candidate metastable states into unstable saddle 
points of the free-energy. 

It has to be stressed that only the limit of zero noise has been treated here. It 
is straightforward, but analytically cumbersome, to extend the above analysis to the 
case of finite noise. One notes that in this noiseless limit the effect of decreasing the 
gain is, as could have been expected, in some respect similar to the effect of increasing 
the noise level in a network of binary units [5]. 

9. Simulations 

Numerical simulations have been performed on networks of size N = 5000, with p = 50 
patterns encoded in the synaptic strengths. The main intent was to test whether the 
types of behaviour predicted analytically in the limits p -+ 00, Q + 0 persisted with 
finite (and rather low) values of N and p .  In the simulations the ‘threshold-linear’ 
neuron representation was used in the absence of noise. This amounted to randomly 
selecting each time a neuron to be updated, computing its local field hi ,  and updating 
it to y = g(hi - Thr)  if hi > Thr, and to = 0 otherwise. A ‘time cycle’ consisted of 
N updatings. Initial configuration were chosen in a variety of ways depending on the 
most important features to be tested in any given gain regime. The synaptic strengths 
were determined according to the three cases for P,, examined above. 

A first general observation concerns the relevance of the value chosen for the thresh- 
old, Thr. Whereas, as shown above, this value is immaterial in the p + 00 limit, in 
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simulations it does affect the dynamics of the system. In particular, a high positive 
threshold (how high depends on the gain and the other parameters) does invariably 
‘turn off’ the network, bringing all neurons to the quiescent state. Below such values, 
varying the threshold resulted mainly in a mild variation of the mean activity level of 
the network, which could typically deviate as much as 30 - 40% from the value set for 
A. In most of the cases reported in the following, the threshold was set to zero. 

The first case to be considered was that of a binary pattern assignment, equa- 
tion (16). We set, as in the following, a = 0.25 and A = 0.1. For low gain 
(g < 0.2 N 0.25) the system, started in an initial configuration having a much stronger 
overlap with one of the patterns than with the rest, always evolved rapidly (< 10 time 
cycles) towards configurations bearing similar overlaps (within 100% fluctuations) with 
all the patterns. Eventually (over a longer time scale, of tens of time cycles) it settled 
into a fixed configuration. Note that for a = 0.25, go = 0.33. 

0.25 < g < 0.7 - 1.0 the system, both when started in a completely 
random configuration or in one having a strong overlap with two or more pattern, 
typically evolves toward configurations in which a single overlap dominates the others. 
When the initial configuration is itself prepared with a single ‘high’ overlap, in most 
cases the same overlap stays high (corresponding to proper retrieval) while in others a 
different pattern is selected at  the expense of the former. This is a manifestation of the 
fact, apparent throughout the simulations, that finite size fluctuations are much more 
important in determining the ‘strongest’ patterns than in modifying drastically the 
nature of the typical fixed points of the dynamics. The strongest patterns are those 
that have been ‘favoured’ in the random assignment of the 7 by having more neurons 
active in them. Thus, in a small system a strong pattern may easily dominate, after 
a transient, over the pattern favoured by the initial configuration. 

For higher g values, the network tends to evolve towards configurations in which an 
increasing (with g) number of patterns have a distinctively high overlap with respect 
to the average (0.5 N 0.9 cf 0.07 - 0.1). This behaviour reproduces qualitatively the 
one expected from the above analysis, although such ‘mixed’ states hardly appear as 
symmetric n-mixtures, and the number of partecipating patterns, if increasing with 
g, shows marked fluctuations. 

Next, P,, was assumed to have the flat distribution of (17). For g < 2.5 N 3.5, 
again any initially high overlap would be washed away in a few time cycles. The 
network reached quickly an almost fixed configuration with a high degree of uniformity 
(typical fluctuations of a few percent in the values of the various overlaps). For slightly 
higher values of g, the network did preserve a single high overlap present in the initial 
configuration to a higher level than the rest (of some 40%), although when started 
from a random configuration in most cases no pattern was selected to have a distinctly 
higher overlap. Finally, for even higher gains, the situation becomes more confused, 
as the increased spread in the values of all the overlaps (30-40%) dominates over any 
clear classification into ‘high’ and ‘low’ ones. 

The last case, of an exponential distribution, (le),  is the one that yields clearer 
results. Around g - 1.1 there is a transition from a low- to a high-gain regime. A t  low 
gain the system always reaches a a fixed point with nearly uniform values for all the 
overlaps from any initial Configuration. At high gain, the initially dominant pattern 
is enhanced during the evolution to an overlap value which grows with g, while the 
spread in the other overlaps is limited. In the transition region, sometimes a different 
pattern is selected to be high, from the one dominant in the initial configuration. 

For 0.2 
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10. Discussion 

This paper shows how the same statistical techniques that have been widely used in 
analysing the attractor neural networks modelling associative memory can be extended 
easily to the case in which a more general representation is used for the elementary 
neuron variables. 

In particular, the threshold-linear representation is a very simplified scheme, that 
is possibly more appropriate than the conventional binary representation in studying 
network models in which individual firing rates are kept well below saturation levels 
by inhibitory mechanisms. In contrast to the binary network [6], the present one 
also exhibits interesting retrieval behaviour at  zero-noise levels. The constraint of low 
rates is in fact compatible, in this case, with the freezing of the system into a single 
configuration. Such freezing does not imply that individual neuron persists in firing a t  
saturation levels, or in the quiescent state. It simply reflects the fact that each neuron 
settles, in the long-time limit, into a given firing frequency consistent with those of all 
other neurons in the network. 

Whereas in the case of binary neurons [5] the parameter essential in determining 
the long-time behaviour was the noise level T ,  with threshold-linear neurons (at T = 0) 
this role is performed by the gain, g. In some loose sense, increasing gain values 
is analogous to decreasing noise levels. However, in the binary case the structure 
of stable states, even in the simplifying cr + 0 limit, presented complex features 
such as a variety of critical noise levels and of possibly metastable states. In the 
analogue case, instead, there is, at least in the limits used in the above analysis, 
a very simple pattern of solutions of a single type, for each g and each choice of 
the distribution P,, determining synaptic strengths. Intermediate g values, in the 
region above a critical go determined by the moments of P,,, provide the appropriate 
regime for a network operating according to the requirement, motivated by biological 
plausibility, of retrieving a memorised pattern without driving individual neurons 
towards firing at  saturation levels. 

With respect to those plausibility requirements, the use of threshold-linear neurons 
causes a different interplay between model parameters and time scales. In the binary 
case, the explicit representation of firing saturation effects implies [5] that: (i) if the 
average firing level X is to be suitably below saturation, one needs X < 1 and (ii) 
if the firing rate of the most active neurons is also to be much below saturation, 
then X/a < 1. In the threshold-linear case, saturation is not represented, so the 
average firing activity X remains a free parameter, that itself sets the time scale in 
accordance with that of biological systems. The constraint of low individual firing 
rates is now reflected in the requirement that the most active neurons should not 
exhibit frequencies higher than the average value by some pre-chosen enhancement 
factor. If, for example, X is taken to correspond to an average activity of a few 
spikes s-’, a typical ‘realistic’ enhancement could be of an order of magnitude. The 
implementation of such a constraint in the model is easy, but the g value required 
depends strongly on the choice of P,,. 

One should note that within this model there remains a problem in relating the 
gain g itself to some experimentally measurable parameter. This is due to the fact that 
g is related to the normalisation of the terms entering the local field h of each neuron. 
In the simplified scheme adopted in the model, involving the effective representation of 
inhibition and the p - 00 limit, that normalisation cannot be related to any ‘realistic’ 
physiological parameter. 
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An interesting question that has not been treated here concerns the storage ca- 
pacity of networks that  use threshold-linear neurons. A capacity calculation provides 
a meaningful test of the generality of results obtained with binary neurons. This is 
presented in a separate paper 1211. 
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Appendix 

We indicate here the main lines of the calculation used to  derive equation (24), using 
the replica method, from the definition of the free-energy 

-1 
lim -[((Z”)) - 11. = n-0 pnN 

N-co 

Here 

‘ 7 ’  

is the partition function for n identical replicas of the systems, labelled with the indices 

One starts by introducing the overlap parameters through &functions, so that 
y ,  6,.  . .. 

where the t P 7  are Lagrange multipliers which impose the definitions of the order 
parameters. 

Then one assumes that only a finite number s of patterns can condense, i.e. they 
have an overlap x P  that  deviates from the average X by a finite amount (as N -* CO), 

and one takes an average over the q distribution of the remaining p - s patterns. The  
integrals over the t P 7  for p > s reduce to  Gaussian integrals, after neglecting terms 
which vanish as N + CO. Next one introduces the global order parameters 
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via &functions. Denoting by Y the matrix with elements y r a ,  one obtains 

(the index U runs over the condensed patterns only, the index Y over the unconde..sed 
ones). The  symbol a2 has been defined in the main text. 

To handle the cubic term, one introduces one more order parameter 

to  be able t o  perform the integrals over xP7 for p > s. The main effect of these integrals 
is t o  produce afactor exp{-(p-s)Tr, ln[i(Y-l - p a 2 / a 2 ) ] } ,  which, together with the 
similar looking factor already present in (A5), can give a finite contribution to  the free 
energy if p = a N  with (Y finite. Considering that the x and (z - A) are fluctuations 
of order 0(1/& and O(l/p) respectively, one can also integrate over them. Then 
((2”)) can be evaluated a t  the saddle point as exp(-n@Nf) where f is given by the 
terms which remain finite as p ,  N -* 00 

One then uses a replica symmetry ansatr and takes the limit n --+ 0. Using the 
saddle point equations for the 2“ to  eliminate the t u ,  and writing p = -2ir/P, A = it 
one arrives at equations (24)-(26). 
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